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ABSTRACT
Transportation recommendation is one important map service in
navigation applications. Previous transportation recommendation
solutions fail to deliver satisfactory user experience because their
recommendations only consider routes in one transportation mode
(uni-modal, e.g., taxi, bus, cycle) and largely overlook situational
context. In this work, we proposeHydra, a recommendation system
that o�ers multi-modal transportation planning and is adaptive
to various situational context (e.g., nearby point-of-interest (POI)
distribution and weather). We leverage the availability of existing
routing engines and big urban data, and design a novel two-level
framework that integrates uni-modal and multi-modal (e.g., taxi-
bus, bus-cycle) routes as well as heterogeneous urban data for
intelligentmulti-modal transportation recommendation. In addition
to urban context features constructed frommulti-source urban data,
we learn the latent representations of users, origin-destination (OD)
pairs and transportation modes based on user implicit feedbacks,
which captures the collaborative transportation mode preferences
of users and OD pairs. A gradient boosting tree based model is
then introduced to recommend the proper route among various
uni-modal and multi-modal transportation routes. We also optimize
the framework to support real-time, large-scale route query and
recommendation. We deploy Hydra on Baidu Maps, one of the
world’s largest map services. Real-world urban-scale experiments
demonstrate the e�ectiveness and e�ciency of our proposed system.
Since its deployment in August 2018, Hydra has answered over a
hundred million route recommendation queries made by over ten
million distinct users with 82.8% relative improvement of user click
ratio.

KEYWORDS
Transportation recommendation; context-aware; personalized; fea-
ture engineering; deployment

⇤Corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.
KDD ’19, August 4–8, 2019, Anchorage, AK, USA
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6201-6/19/08. . . $15.00
https://doi.org/10.1145/3292500.3330660

ACM Reference Format:
Hao Liu, Yongxin Tong, Panpan Zhang, Xinjiang Lu, Jianguo Duan, and
Hui Xiong. 2019. Hydra: A Personalized and Context-Aware Multi-Modal
Transportation Recommendation System. In The 25th ACM SIGKDD Con-
ference on Knowledge Discovery & Data Mining (KDD’19), August 4–8, 2019,
Anchorage, AK, USA. ACM, NY, NY, USA, 9 pages. https://doi.org/10.1145/
3292500.3330660
1 INTRODUCTION
Transportation recommendation is a core component in various
map services and has deeply penetrated into the everyday life of
citizens. Transportation recommendation refers to a set of routes
recommended to users given the speci�c OD pair input by users.
Online map services such as Baidu Maps answer over a hundred
million transportation recommendation queries made by over ten
million distinct users in China per day.

Despite its popularity and frequent usage, existing transporta-
tion recommendation solutions still fail to deliver satisfactory user
experience. According to Baidu Maps, over 15% of the users tend
to request transportation recommendations on di�erent uni-modal
routing engines (e.g., taxi and bus), indicating the requirement of
inter-modal transportation comparison. Furthermore, 89.1% rout-
ing queries from users are answered with feasible transportation
recommendations but over 58.5% of the transportation recommen-
dation list has no user clicks (see Table 1), indicating none of the
recommended transportation plans are satisfactory.

The above observations indicate two limitations of current trans-
portation recommendation solutions. (i) Ignorance of situational
context. For instance, when a big concert lets out, it is di�cult to
call a taxi. A better solution may consider supplement of multiple
alternative transportation modes (as illustrated in Figure 1) and
recommend the most e�cient one. (ii) Uni-modal transportation
recommendation. For example, imagine the following scenario that
the distance of the OD pair is relatively large, and the trip purpose
is in no emergency. In this case, a cost-e�ective transportation
recommendation that including multiple transport modes, e.g., taxi-
bus, maybe more attractive (as illustrated in Figure 1(b)). Hence,
the transportation recommendation should adapt to the situational
context e.g., whether there is a concert, and provides more �exible
recommendations, e.g., combining buses and taxis.

To address these limitations, we propose Hydra, a personalized
and context-aware multi-modal transportation recommendation
system. Inspired by the availability of existing routing engines
and big urban data, we design a novel framework that integrates
route plans in di�erent transportation modes (including both uni-
modal and multi-modal transportation plans) and heterogeneous

Applied Data Science Track Paper KDD ’19, August 4–8, 2019, Anchorage, AK, USA

2314



%DLGX�7HFKQRORJ\�3DUN

7KH�&KLQD�:RUOG�7UDGH�&HQWHU

=KL[LQJ 7D[L 'ULYH %XV :DON &\FOH

7UDQVSRUWDWLRQ 6HWWLQJ

,QWHOOLJHQW 5HFRPPHQGDWLRQ

7D[L�%XV ӝ�� �K��PLQ

6XEZD\ /LQH ��

7D[L�WR�+DLGLDQ�+XDQJ]KXDQJ�6XEZD\�6WDWLRQ z �� VWRSV
z :DON ��� P z 7D[L ���� NP� ӝ��

'ULYH
���� NP z ��� NP +LJK 7UDIILF z � 7UDIILF OLJKWV

��PLQ

ӝ��� ��PLQ7D[L
���� NP z :DLW IRU SLFN�XS � PLQ z ���PLQ�RI�WUDYHO

%XV

6XEZD\ /LQH ��%XV ��� 6XEZD\ /LQH ��

�� VWRSV z :DON ��� NP z *HW RQ DW +RXFKDQJFXQ 6WDWLRQ

ӝ� �K��PLQ

(a) Recommendation list.

7D[L�WR�+DLGLDQ�+XDQJ]KXDQJ�6XEZD\�6WDWLRQ z �� ŏ

7D[L
*HW RQ DW WKH %DLGX
7HFKQRORJ\ 3DUN

+DLGLDQ +XDQJ]KXDQJ
6XEZD\ /LQH ��

7KH�&KLQD�:RUOG�
7UDGH�&HQWHU

(b) Details of the �rst route.

Figure 1: An example of user interfaces of Hydra on Baidu
Maps. The left �gure shows the list of plans in various trans-
portation modes ordered by our recommendation model.
The right �gure shows the details of the top-1 recommenda-
tion, which is a multi-modal transportation plan (i.e., �rst
take taxi and then bus). The �rst recommended plan is 26.3%
faster than the pure bus plan and 61.2% cheaper than the
pure taxi plan.

urban data. Hydra not only extracts features from multi-source
urban data, but also learns the latent representations of users, OD
pairs and transportation modes based on user clicks to capture
the collaborative transportation mode preferences of users and
OD pairs. It then applies a gradient boosting tree based model to
recommend the proper transportation plan among various uni-
modal and multi-modal transportation routes.

In web-scale recommendation, the service scalability and online
recommendation latency is also curial for user experience [22]. To
address the service e�ciency concern, we build a distributed o�ine
data pipeline as well as an RPC based online web service framework.
Besides, we propose a dedicated region index structure in online
feature processing to reduce the online recommendation latency.

Our main contributions can be summarized as follows.

• We proposeHydra, a multi-modal transportation recommen-
dation system. To the best of our knowledge, this is the �rst
product level intelligent routing engine that integrates vari-
ous transportation modes in a uni�ed service.

• We design a novel recommendation model that is adaptive
to the situational context. We extract a rich set of features
from multi-source urban data to sense the context variation
and adopt a graph embedding based algorithm to capture
the transportation preferences of users and OD pairs.

• We propose a series of optimization techniques to improve
the time e�ciency of the recommendation system and dis-
cuss several deployment issues in a hundred million user
level online map service.

• Extensive real-world urban-scale experiments on real datasets
show that our proposed framework outperforms six baseline

Table 1: Statistics of datasets.
Data description B������ S�������

User behavior data
# of queries 5,956,596 5,628,921
# of displays 5,308,127 4,993,350
# of clicks 2,205,091 1,980,870

Geographical data
# of POIs 900,669 1,061,399

# of road segments 812,195 768,336
# of bus stations 44,830 45,052

Meteorological data # of weather records 34,944 32,760
User pro�le data # of distinct users 1,199,399 1,217,140

algorithms in four metrics. The online recommendation ser-
vice achieves less than 250ms latency in average and scale
well in the production environment.

In the rest of this paper, we �rst describe the details of the real-
world large datasets used in our study in Section 2, and elaborate on
the detailed methodologies of our transportation recommendation
system in Section 3. We next introduce our deployment details and
e�ciency optimization techniques in Section 4. Evaluations on two
large-scale industrial datasets are presented in Section 5. Finally
we review related work in Section 6 and conclude in Section 7.

2 DATA DESCRIPTION AND ANALYSIS
This section introduces the datasets that will be used in the follow-
ing sections, with a preliminary data analysis. The datasets include
user behavior data, geographical data, meteorological data and user
pro�le data collected from B������ and S�������, twometropolises
in China. Table 1 summarizes the statistics of the datasets.

2.1 User Behavior Data
User behavior data captures the user interactions with navigation
applications. Our user behavior data are collected from Baidu Maps,
a large-scale navigation app, from September 2018 to November
2018. According to a user interaction loop, the user behavior data
can be further categorized into query records, display records and
click records. In short, a query record represents one route search
from a user on Baidu Maps; a display record is the routes rec-
ommended by Baidu Maps shown to the user; and a click record
indicates the user feedback of di�erent recommendations (i.e., a
user may click on speci�c routes displayed to him/her for details, as
in Figure 1). Please refer Appendix A for detailed data description.

We brie�y explain the distributions of our user behavior dataset
in B������ below (see Figure 2(a)-Figure 2(e)). Note that similar
observations held in S�������, which we omit due to the page
limit. Figure 2(a) and Figure 2(b) depict the spatial distributions of
origins and destinations in the query records. Most origins and des-
tinations are within the 6th ring road, i.e., the central area of Beijing.
The distribution of destinations is more concentrated than that of
origins, indicating that most queries are about speci�c POIs such
as transport stations and city landmarks. The spatial distribution
patterns of origins and destinations motivate us to use geographi-
cal data to capture the spatial dependency for transportation route
recommendation. Figure 2(c) plots the temporal distributions of
query, display and click records (i.e., numbers per day). The tem-
poral distributions exhibit strong periodicity, where peaks often
correspond to weekends and holidays. For example, the peaks on
the 22nd and 31st days correspond to the mid-autumn festival and
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(a) Spatial distribution of origins. (b) Spatial distribution of destinations.
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(f) User age distribution.

Figure 2: Distributions of the B������ dataset: (a) the spatial distribution of query origins; (b) the spatial distribution of query
destinations; (c) the temporal distribution of user query behavior in three successive months; (d) the distribution of travel
distances; (e) the distribution of clicks on transport modes; (f) the distribution of user ages.

the National day, two public holidays in China. Figure 2(d) shows
the distribution of trip distance from the queries. Here the trip
distance is measured by the spherical distance on earth [10]. Over
60% trips are within 10 Kms and 80% trips are within 20 Kms. This
indicates short-distance and mid-distance trips are the major query
demand on online navigation applications. Figure 2(e) shows the dis-
tribution of clicks on di�erent recommended routes. Above 54.64%
clicks involve buses (i.e., bus and bus-bicycle) and 25.12% clicks are
drive or taxi, indicating public and car-based transportation are
more preferable.

2.2 Geographical Data
Intuitively, geographical characteristics of origins and destinations
partially re�ect the situational context, and thus a�ect user prefer-
ences on transportation modes. Accordingly, we use a large-scale
geographical dataset collected from (i) professional surveyors em-
ployed by Baidu Maps (ii) the crowdsourcing platform in Baidu,
which include POI data, road network data and transportation sta-
tion data in B������ and S�������. All data are updated daily. We
present a detailed data description in Appendix A.

2.3 Meteorological Data
Meteorological data tend to re�ect the temporal dynamics of the
situational context when planning trips, and thus may also a�ect
the user preference on transportation modes. For example, the de-
mand for taxis may be higher in the case of snow, rain and severe
air pollution. We collect the meteorological data from an online
meteorology website of the Chinese government over three months
from September 1st to November 30th. Each record of meteorolog-
ical data consists of an administrative district, a time stamp, the
weather, the temperature, the wind strength, the wind direction
and the Air Quality Index (AQI). The weather is categorized as

sunny, cloudy, rainy and overcast. The AQI is an integer of the air
pollution level.

2.4 User Pro�le Data
User pro�le attributes re�ect individual preference on transporta-
tion modes. For instance, subways are more cost-e�ective than
taxis for most urban commuters, and driving is likely to be the
�rst choice for car owners. We collect user pro�le attributes from
multiple Baidu applications including Baidu search, Baidu App and
Baidu Maps. The B������ dataset contains 1, 199, 399 distinct user
records and the S������� dataset contains 1, 217, 140 distinct user
records. Each record consists of a user’s demographic attributes
including the age, the gender, and social attributes such as the indus-
try, the educational level, and whether the user is a car owner. All
user pro�le records are anonymized and cannot be associated with
sensitive personal information such as names and phone numbers.
Figure 2(f) plots the age distribution of B������ dataset. Most Baidu
Maps users are between 18 and 54 years old.

3 HYDRA FRAMEWORK
This section presents the framework of Hydra in detail.

3.1 Overview
Figure 3 shows an overview of Hydra. It consists of four major
components, Route generation, Feature construction, Transport mode
preference representation and Transportation recommendation. The
Route generation module leverages existing uni-modal routing en-
gines to generate feasible routes in di�erent transport modes. There-
after, the Feature construction module extracts features from var-
ious urban datasets. Meanwhile, the Transport mode preference
representation module captures high-order user (resp. OD pair)

Applied Data Science Track Paper KDD ’19, August 4–8, 2019, Anchorage, AK, USA

2316



�!(���'���#!&%� ��� �� �$

	������'���#��!��� ��%�! 

�&�%��$!&#���&#�� ���%�$�%$

�$�#�����'�!#���%�

�&�#*�#��!#�

��$"��*�#��!#�

������#��!#�

��!�#�"��������%�

�


�!��� �%(!#�

�%�%�! 

��%�!#!�!��������%��$�#�"#!�������%�

���%&#���! $%#&�%�! 

���"!#���
���%&#�$

��%�!#!�!������
���%&#�$

�"�%����
���%&#�$

��� �
���%&#�$

�$�#�
���%&#�$

���!��� ��%�! ��!���

���� ��"#!��$$� �  �� ��"#!��$$� �

����! �� ��)
��%�!#!�!������

$�#'���

�$�#�� %�#��%�! 

 �� �����%&#��
�! $%#&�%�! 

 �� ����%��
#�%#��'��

��!�#�"������*��&"����%����!���

�!����� �
��%���� %�#��

�!����� 
��%���� %�#��

�!����� 
��%���� %�#�� …

Drive Bus Cycle Walk Bus + Taxi

- …

�!���"#���#� ���
#�"#�$� %�%�! 

Data integration

Route 
generation

Logging

Model
update

Route 
generation

Figure 3: Hydra Overview.

transport mode preference representation through a graph em-
bedding method. Finally, the Transportation recommendation mod-
ule integrates handcrafted features and embedding features to
make recommendation. In this paper, we consider seven transport
modes {dri�e, taxi,bus, c�cle,walk, taxi-bus,bus-c�cle}. In partic-
ular, the �rst �ve modes are uni-modal transport modes whereas
taxi-bus and bus-c�cle are multi-modal transport modes. Accord-
ing to log analysis, taxi-bus and bus-c�cle are top multi-modal
travel demands and are already well supported in Baidu Maps. Note
that we treat each uni-modal and multi-modal transport mode as
distinct transport modes, which makes our model extendable for
other potential transport modes.

3.2 Route Generation
We adopt existing low level routing engines to generate feasible
routes for each transport mode. In online processing, the route
is searched in real-time in parallel. Speci�cally, when a query is
received, a station binding process is �rst applied to bind origin and
destination locations to validate start and end points. For example,
the location is bound to road segments for drive and taxi, and to
transport stations for bus. After that, a bidirectional shortest-path
search [12] is applied on each transportation network. For each
uni-modal transport mode, a contraction hierarchy (CH) [11] is
pre-constructed on the transportation network to reduce search
latency. A set of valid routes is generated by various criteria, e.g.,
fastest, distance shortest and least transfer. For multi-modal trans-
portation, the search strategy is slightly di�erent. We build a multi-
modal transportation network [6] and restrict the number of modal-
transfer to guarantee the utility [5] of searched routes. Finally, an
internal rule based ranking model is applied in each transport mode
to �lter out routes with high segment overlap and decide the or-
der of routes. For ease of cross-mode comparison, only one route
of each transport mode will appear in the �nal display. In o�ine
processing, the route is directly retrieved from user behavior data.
In the production environment, a query understanding component
will be invoked before route generation to bind fuzzy search key-
words with concrete POIs. We omit further discussions since they
are out of the scope of transportation recommendation.

Figure 4: An illustrative example of region partition base on
road network connectivity in B������. Di�erent colors indi-
cate di�erent region functionality derived by TF-IDF based
on the POI distribution.

3.3 Feature Construction
We introduce the process of constructing, transforming and aug-
menting feature vectors below. Appendix B lists features we con-
struct based on each dataset with a detailed description.

3.3.1 Plan Features. Cost of a plan such as Price and ETA are part of
considerations for user preferences. For each plan, we extract Road
network distance, Route distance, ETA, Price, Transfer count, Transfer
model count from display records. The Road network distance is the
real travel distance on the road network. For walking and cycling,
Price is set to zero.

3.3.2 Spatial Features. We �rst extract District and POI category
features of the origins and destinations. As shown in Figure 5(a),
the transportation mode choices of di�erent destination POI cate-
gories vary. For example, the demand for buses to Sports and Tourist
Attraction POIs is higher than average. In contrast, the demand for
buses to Beauty, Life Service and Food POIs is lower than average.
Then we calculate the Spherical distance of OD pairs. Figure 5(b)
shows the relation between trip distance and the percentage of
di�erent transport modes. We observe a strong correlation between
Spherical distance and transport mode choice. Walk and cycle are
the major choices for trips shorter than 5 Km whereas bus and
drive are the major choices for trips longer than 10 Km. The peak
of demand for taxi appears when the trip distance is near 5 Km.
Since the road connectivity and transport stations in a region are
�xed, the transport availability of adjacent OD pairs is similar. To
incorporate such regional dependency, we partitioned the city into
a set of non-overlapping regions through the road network [34].
Figure 4 gives an illustrative example of partitioned regions of B���
����. For each origin region, we further compute the POI count of
each POI category as Regional POI distribution, transport facility
count (i.e., road segment, road intersection, bus station and bus
line) as Regional transport facility distribution and transport mode
click count as Regional historical mode distribution. We also extract
similar features for destination regions and OD region pairs.

3.3.3 Temporal Features. We exploit Hour, Minute, Day of week,
Day of month and Workday as the temporal features. As shown in
Figure 5(c), distributions of transportation mode choices di�er in
di�erent time periods. The demand for walk and cycle is mainly in
daytime whereas the demand for taxi and taxi-bus is still high at
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Figure 5: Feature distributions of the B������ dataset.

night. As illustrated in Figure 5(d), the transport mode preferences
during di�erent time periods on weekdays and weekends also di�er.
For drive, there are two peak hours in a day. However, the peak on
weekday mornings is earlier than that on weekend mornings and
the peak on weekday evenings is later. Conversely, peak hours at
weekends are closer and the demand is more evenly distributed in
the daytime.

3.3.4 Meteorological Features. We adopt Weather, Temperature,
AQI, Wind speed and Wind direction as the meteorology features.
Figure 5(e) depicts the correlation between weather and transport
mode preference distributions. The demand for drive is higher on
overcast and rainy days whereas the demand for bus on overcast
days is lower.

3.3.5 User Features. We construct user features based on users’
Demographic attribute, Social attribute and User historical mode dis-
tribution, as shown in Table 5. Figure 5(f) depicts the correlation
between the age of users and the transport mode choices. We ob-
serve that older people have higher demand for drive and taxi,
whereas younger people prefer walk and bus more.

3.4 Transport Mode Preference Representation
Transport mode preference representation aims to learn high order
collaborative relationship among users, OD pairs, and transport
modes. The intuition is, users travelling similar OD pairs via similar
transport modes have similar transport mode preference. Inspired
by the recent success of embedding methods [13, 18] on preserving
local network structures, we construct a heterogeneous graph G =
(V, E) of user nodes U, OD pair nodes OD and transport mode
nodesM based on the user behavior data (Figure 6). The target is to
project each node � 2 G into a low dimensional vector in the latent
space, each of which re�ects the neighborhood relationship (a.k.a.
the second-order proximity) inG . We analogize random walks with
the constructed click events, where a click event is de�ned as a user

u clicked on a route in transport modem over a speci�c OD pair
od . We adopt Trans2vec [15] and skip-gram [17] on G. Speci�cally,
given a click event, the latent vectors of �u 2 U, �od 2 OD and
�
m

2 M, denoted as uu , uod , and um , are learned by maximizing
the following conditional log probability:

Ot =
’
t 2T

’
�i 2V t

’
ntj 2Nt (�i )

logp(ntj |�i ), (1)

where T = {u,od,m} is the type of nodes in G, and n
t
j 2 N

t
(�i )

is the type aware context node of �i ever co-occurred in a click
event. That is, only heterogeneous neighbour nodes are considered
as valid context nodes. For example, for �i 2 U, we have N t

(�i ) ✓
{OD,M}. p(ntj |�i ) is the conditional probability of observing type
aware neighborhood ntj 2 G conditioned on the presence of �i :

p(n
t
j |�i ) =

e
u0j

|
·ui

Õ |V t |
k=1 e

u0k
|
·ui
, (2)

where u0j is the context representation vector of�j as a context node
and |V

t
| is the number of nodes with type t in graph G. To reduce

the computation complexity, we employ negative sampling [17] for
e�cient learning. The objective function becomes:

Ot = log� (u0j
|
· ui ) +

K’
i=1

E� tn⇠Un (� t )[log� (�u
t
n
|
· ui )], (3)

where � is the sigmoid function. The �rst term models observed
edges in click events whereas the second term draws K negative
edges from a uniform distribution. In this way, the distance between
the learned user (resp. OD) embedding and each transportation
mode embedding re�ects the preference of a user (resp. OD) to
each transport mode. That is, those users (resp. ODs) having similar
transportation mode preference should be close to each other in
the latent embedding space.
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Figure 6: An illustrative example of the heterogeneous trans-
portation graph. Each edge indicates the frequency of a user
�
u
i (resp. OD pair �odj ) clicking on a route of a speci�c trans-
port mode.

3.5 Transportation Recommendation
We model the transport mode recommendation as a multi-class
classi�cation problem. Once the embedding vectors are learned,
the proper transport mode can be derived by calculating the in-
ner product of embedding vectors (as in [15]). In the production
environment, however, the embedding method su�ers from the
cold-start problem. That is, 62.9% queries are from new users (i.e.,
users migrate from other routing engines and new users of Baidu
Maps) or target to new OD pairs (i.e., OD pairs which have not been
queried by users). To handle such cases, we concatenate the learned
embedding vector of the user and the OD pair with the handcrafted
features (as in Section 3.3) into a d dimensional feature vector.

Given a preprocessed dataset of n instances,m transport modes
and d feature dimensions, we transform the raw data into a 2D
matrix D = {xi ,�i } where |D| = n, xi 2 R

d is the feature vector
and �i 2 R

M is the i-th transport mode. We employ the gradient
boosting tree [8] as our recommendation model because gradient
boosting tree based algorithms [3] are suited for data mining with
sparse and high dimensional features. Speci�cally, we sequentially
generate a set of tree classi�ers F (·) = { f1(·), f2(·), . . . , fk (·)} and
ensemble the result of each classi�er to generate the overall predic-
tive result.

�̂i = F (xi ) =
k’
j=1

fj (xi ), fj 2 F , (4)

where �̂i is the estimated transport mode of i-th instance, f (·) is a
softmax regressor for multi-class classi�cation:

f (xi ) =
e
w|
q xi

Õ |M |

p=1 e
w|
p xi
, (5)

where wq is the parameter vector of the q-th class. The learning
objective is to minimize

O =

n’
i=i

l(�i , �̂i ) +
�1
2

k’
j

kwjk1 +
�2
2

k’
j

kwjk2, (6)

where l(·) is is the cross-entropy loss, �1 and �2 are hyper-parameters
for L1 and L2 regularizations, respectively.

The gradient of the tree function is derived much harder than
traditional optimization tasks. Since we train classi�ers sequen-
tially, we approximate the gradient based on the previous step. The

objective at the t-th iteration becomes

eOi =
n’
i=1

(�i ft (xi )+
1
2
hi f

2
t (xi ))+

�1
2

k’
j

kwjk1+
�2
2

k’
j

kwjk2, (7)

where �i = @�̂t�1i
l(�i , �̂t�1i ) and hi = @2�̂t�1i

l(�i , �̂t�1i ) are the �rst
order and second order gradient statistics of l(·). The detailed de-
duction can be found in [7].

4 DEPLOYMENT
Hydra has been deployed on Baidu Maps. In this section, we de-
scribe the implementation and deployment details.

4.1 O�line Processing
Due to the complex data dependency, we propose an automatic
pipeline for data integration and feature engineering. We employ
Big�ow1 as the o�ine data pipeline platform. Big�ow is an open
source programming abstraction that allows for programming and
processing data on various distributed computing engines (e.g.,
Hadoop Tez [19] and Spark [35]). In Big�ow, a set of data wrangling
operators such asmap, f ilter and join is well supported and the
lower level distributed operations are transparent to users.

4.1.1 Data pipeline. There are two components, data preprocessing
and feature construction, in the data pipeline. In the data prepro-
cessing phase, the user behavior data is appended on daily basis,
the geographical data and user social data are updated on monthly
basis and the meteorological data is collected per hour. In the mid-
night, each dataset is extracted from the log system of Baidu Maps
and related databases. All datasets are integrated as described in
Appendix D. The integrated dataset is stored as a large fact table.
In the feature construction phase, features are extracted from the
fact table. For numerical features, we replace missing values with
either default values or the average value. Then we remove outliers
and apply min-max normalization to scale the values into [0, 1].
For categorical features, we consolidate the rare categories into the
"Other" category and then apply one-hot encoding to each cate-
gorical feature. Finally, all features and labels are combined into
a two dimensional array and all side information, such as column
min-max values and feature dimensions, is stored in a meta-data
�le.

4.1.2 Model Training. We use the XGBoost library2 to train the
recommendation model. The recommendation model is updated on
daily basis to take new data into consideration. To exclude seasonal
changes, we de�ne a three-month sliding time window for training
data selection. Once the data pipeline is �nished, the model update
script is triggered to update the model.

4.2 Online Processing
BaiduMaps answers billions of queries in each day. Thus, it is crucial
to o�er e�ective and scalable online service to users. To this end,
we build e�cient region index and scalable web service framework
to enable low latency and high throughput online service.

1http://big�ow.baidu.com
2https://xgboost.readthedocs.io/en/latest/
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4.2.1 Region Index. For online feature processing, a batch of sta-
tistical features is required to be mapped from coordinates to re-
gions (e.g., join the origin coordinates of a query with the regional
POI distribution). Traditional spatial index, such as R-tree, requires
O(logn) search time, which is time consuming for cities with a
large number of regions. We proposed a dedicated region index to
speed up such mapping process. Speci�cally, we divide the city into
�ne-grained grids based on coordinates with a unique grid id. We
then allocate regions to the corresponding grids. Note that each
region is an irregular polygon, therefore, a grid may be intersected
with one or multiple regions. For example, the minimum bounding
rectangle (MBR) [(116.30, 40.05), (116.31, 40.06)] is partitioned to
grid �1, with id 11630_4005. If there are two regions r1 and r2 inter-
sect with �1, the index in the database is stored as a key-value pair
(11630_4005, [r1, r2]), where the value is a list of regions. Internally,
the grid-regions pair is stored as a hash table in Redis. Since the
region is partitioned based on the road network, most grids are
only associated with one or a few regions. In practice, the average
time cost of the mapping process is much lower than that of R-tree.

4.2.2 Web Service Framework. We build the web service based on
BRPC (https://github.com/brpc/brpc), a scalable RPC framework
used throughout Baidu. The model is duplicated in four data centers
distributed over China to reduce network latency of the service.
Speci�cally, the online service contains three components. First,
retrieve geographical information, meteorological data, user pro�le
data in parallel and integrate them with raw route plans. Second,
execute the online feature engineering process by leveraging the
metadata generated in the o�ine data pipeline. Third, feed the
processed feature vector into the model, sort each mode by model
score and return the transport mode with the highest score to the
user. About 6% of transport modes with the highest score have
no corresponding plan. Instead, we recommend the next transport
mode that has a feasible plan.

5 EXPERIMENTS
5.1 Experimental Setup
We conduct experiments on the datasets described in Section 2. We
mainly focus on (1) the overall performance of our approach, (2)
each feature contribution and (3) the robustness of our approach.
We also present the user satisfaction analysis and the e�ciency
and scalability of our system. We split data from September 1 to
November 20 as training set and the remaining as testing set.

Metrics.We adopt the overall NDCG [29], weighted precision,
recall and F1 metrics to evaluate the performance. The NDCG met-
ric takes all transport modes into consideration whereas the rest
metrics only care about the top-1 recommendation.

Baselines. We compare our approach with two statistical rec-
ommendation methods and four learning based methods.

• UHP recommends the transportation mode of route using
the fraction of user historical preference. The most common
transport mode choice of the user will be recommended.

• ODHP recommends the transportation mode of route using
the fraction of OD historical preference. The most popular
transport mode between the OD pair will be recommended.

Table 2: Overall recommendation performance.

B������

Algorithm N��� P��� R�� F1
UHP 0.29 0.159 0.207 0.18
ODHP 0.343 0.478 0.229 0.31
LR 0.802 0.255 0.681 0.371
RF 0.754 0.329 0.448 0.379
LTR 0.798 0.258 0.673 0.373

Trans2vec 0.462 0.26 0.282 0.271
Hydra 0.815 0.271 0.72 0.396

S�������

UHP 0.288 0.162 0.188 0.174
ODHP 0.367 0.454 0.253 0.325
LR 0.789 0.262 0.652 0.374
RF 0.747 0.336 0.423 0.37
LTR 0.794 0.265 0.653 0.377

Trans2vec 0.46 0.266 0.258 0.262
Hydra 0.819 0.274 0.685 0.391

Table 3: Top-10 features ranked by information gain.

Rank Feature name Relative gain
1 Walk ETA 1
2 Bus-cycle ETA 0.803
3 Bus ETA 0.577
4 Taxi-bus ETA 0.451
5 User walk percentage 0.295
6 Consumption level 0.213
7 Origin station count 0.162
8 Primary POI category 0.096
9 Hour 0.092
10 Spherical distance 0.051

• LR recommends the transportation mode of route via the
well-known logistic regression model. The input feature is
same with our method as described in Section 3.3.

• RF recommends the transportation mode of route using
Random Forest. The input feature is same to our method as
described in Section 3.3.

• LTR is a popular LambdaMart [2] learning to rank method,
where the pairwise loss is minimized.We use the plan feature
described in Section 3.3 as input.

• Trans2vec is the state-of-the-art transportation mode rec-
ommendation method [15] based on graph embedding. It
makes recommendation based on the inner product of user
vector and transportation mode vector and the inner product
of OD pair vector and transportation mode vector.

5.2 Overall Recommendation Result
Table 2 depicts the overall results of our method and all the com-
pared baselines with respect to four evaluation metrics. We can
make the following observations. (i) Hydra achieves better perfor-
mance than six baselines over all metrics except P���. Although
the P��� of Hydra is worse than ODHP and RF, Hydra achieves
better balance between P��� and R��, which is evaluated by F1. (ii)
The performance of LR is only slightly worse compared withHydra
and is competitive with LTR, which matches our expectation that
situational context information and tailored feature engineering is
curial for multi-modal transportation recommendation. (iii) The
performance of solely Trans2vec is not well on the dataset with
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(a) Group by users (b) Group by OD pairs

Figure 7: Robustness check on the B������ dataset.

large proportion of cold-start users (resp. OD pairs). Overall, incor-
porating handcrafted features and high-order embedding features
with a gradient boosting tree model outperforms all other baselines.

5.3 Feature Importance Analysis
To evaluate the e�ectiveness of feature construction, we rank fea-
tures by information gain [16]. The higher information gain in-
dicates higher frequency the feature used to split nodes in each
individual tree. Table 3 reports top-10 features and their relative in-
formation gain. The top 4 features are all plan ETA of corresponding
modes, which meets our expectation that travel time is the major
consideration in the transport mode choice. Besides, we observe
user attributes especially user social attributes such as historical
mode preferences (walk preference in rank 5) and consumption
level (rank 6) also make signi�cant contribution for transport mode
prediction. Features from rank 7 to rank 10 are spatial features and
temporal features, which validates our intuition that the spatial and
temporal dependency in�uences the transport mode choice.

5.4 Robustness Check
A robust algorithm should perform evenly on di�erent subgroups
of queries. We group queries from two perspectives: 1) user pro�le
perspective, and 2) OD pro�le perspective. For 1), we segment users
through gender and age, i.e., women and age lower than 35, men
and age lower than 35, women and age older than 35, men and
age older than 35. For 2), we segment OD pairs based on region
functionality (i.e., we use the POI distribution of corresponding
regions), classical K-means is applied to cluster OD pairs into four
disjoint groups. Figure 7 illustrates the performance of our method
on di�erent subgroups on B������, the results on S������� are
similar. For di�erent groups of users, the results are strongly stable
on four metrics, which validates the robustness of our method for
di�erent users. For di�erent OD pairs, the results are also stable on
four metrics expect the third group (e.g., for R��, the di�erence is
over 10%). This result indicates the variation from the OD pro�le
perspective is more signi�cant, further optimization on the third
group can be applied in future to improve the overall performance.

5.5 User Interview
The model has been deployed on Baidu Maps since mid 2018. In
past months, the model has answered over a hundred million route
planning requests and served over ten million distinct users. To
assess the user satisfaction of model recommendations, we pub-
lished survey questionnaires to frequent Baidu Maps users. Overall,

��
�����

�
�����


���	�

�
��
�

��
��	�

(a) User satisfaction (b) Latency

Figure 8: Results of the online service.

738 valid questionnaires are collected. In the questionnaire, we set
�ve level satisfaction categories, G+,G, S,B,B+, where G stands
for good, S stands for same as before, B stands for bad. As shown
in Figure 8(a), over 86.7% users think the recommendation result
is better than before, and only 1.6% users think the recommen-
dation result becomes worse. That is, our method provides better
recommendations in terms of user experience.

5.6 E�ciency and Scalability
We further evaluate the query response latency of our framework
in the production environment. The query response latency is com-
posed of two parts, low level routing cost and high level recommen-
dation cost. As reported in Figure 8(b), when we vary the query
per second (QPS) from 1 to 10, 000, the low level routing latency
increased from 220ms to 671ms, whereas the high level recommen-
dation latency increased from 5ms to 274ms. Overall, the low level
routing is the major bottleneck and can be further optimized. Note
that the peak QPS of the online service is less than 1, 000, the online
workload thus can be well handled by our system.

6 RELATEDWORK
Route recommendation. Route recommendation has attracted
much attention from both the academia (e.g., [1, 28]) and industries
(e.g., Google Maps and Baidu Maps). A common routine of route
recommendation is to apply the algorithms of shortest distance
queries [9] with prede�ned cost functions [21]. As another impor-
tant direction, the quality of recommended routes can be improved
by leveraging large-scale historical trajectories [36]. Speci�cally,
T-Drive [33] captures the intelligence of taxi drivers via a landmark
graph. Dai et al. [4] recommends routes by considering personal
preference (e.g., time e�ciency or fuel e�ciency) for each individ-
ual driver. Zhou et al. [37] proposes a “semi-lazy" approach for path
prediction. Recently, the route recommendation for shared mobil-
ity also attracted research interest to improve e�ciency [27] and
revenue [24–26]. However, all of them consider uni-modal route rec-
ommendations and thus cannot be directly applied for multi-modal
route recommendation. Trans2vec [15] considers multi-modal rec-
ommendation by learning embedding of users, OD pairs and trans-
port modes. But it su�ers from the cold-start problem and requires
extra models or strategies to handle new instances.

Urban computing. With the development of city urbanization,
various data generated from GPS, sensors, buildings and humans
has been applied to tackle various urban issues. For example, Yi
et al. [31] and Yu et al. [32] predict urban safety by considering

Applied Data Science Track Paper KDD ’19, August 4–8, 2019, Anchorage, AK, USA

2321



multiple spatial and temporal factors. Moreover, Tong et al. [23] and
Xia et al. [30] predicts taxi demands based on multi-sourced urban
data. Sun et al. [20] mines the urban region-of-interest through
map search queries. As another example, Zhu et al. [38] captures
user preferences for mobile recommendation. Motivated by above
studies, we integrate multiple urban datasets to improve the perfor-
mance of route recommendation among various transport modes.
To the best of our knowledge, it is the �rst work that integrates
multiple sources of urban data for route recommendation among
various transport modes in a data-driven way at urban-scale.

7 CONCLUSION
In this paper, we presented Hydra, a personalized and context-
aware multi-modal transportation recommendation system. It is a
two-level system that adaptively recommends uni-modal and multi-
modal transportation routes according to the user preferences and
the situational context. We �rst extracted a rich set of features from
user behavior data and several urban data collected from other
sources. Next, we learnt embedding features via the heterogeneous
transportation graph to enhance the recommendation performance.
Moreover, a gradient boosting tree based model was devised for
multi-modal transportation recommendation. Finally, we discussed
several deployment issues to optimize Hydra to be scalable, includ-
ing o�ine data pipelines, high performance spatial index, as well as
the construction of web service framework. Extensive evaluations
on real-world datasets validate the e�ectiveness and e�ciency of
Hydra. More importantly, Hydra has been deployed to Baidu Maps,
one of the largest online map services, and has answered over a
hundred million route recommendation queries made by over ten
million distinct users.
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A EXTENDED DATA DESCRIPTION
We �rst introduce three kinds of user behavior data in detail, include
query record, display record and click record.

• Query record. A query record consists of a session ID, an
anonymized user ID, a time stamp, the coordinates and the
POIs of the origin o and the destination d , and the operating
system of the device. For example, [si ,ui , “2018� 09� 01 15 :
15 : 36”, (116.30, 40.05), (116.353, 39.99), “Baidu Buildin�”,
“Beihan�Uni�ersit�”, “IOS”]means a userui makes a query
on a trip from Baidu Building to Beihang University in the
afternoon of September 1st, 2018.

• Display record.A display record consists of a session ID, an
anonymized user ID, a time stamp and a list of routes. Each
route consists of the transport mode, the estimated route
distance, the estimated time of arrival (ETA), the estimated
price and the rank in the display list. The number of displayed
routes varies across queries, and there can be no feasible
routes for certain queries.

• Click record. A click record consists of a session ID, an
anonymized user ID, a time stamp, and a list of clicked routes
in the route list. There can be none or multiple clicks on a
route.We only record the �rst click on each route and remove
repeated clicks.

Then we present three kinds of geographical data in detail, in-
clude POI data, road network data and transportation station data.

• POI data. Semantics in POIs indicate the travel intention
and have been applied for various urban computing tasks
[14]. Our POI dataset contains 1, 204, 344 distinct POIs in
B������ and 1, 594, 684 distinct POIs in S�������. Each POI
record has a POI ID, an ascendant POI ID, coordinates of
the location, the POI name and a two-level category. The
ascendant POI is the higher level POI of the current POI.
For example, "Baidu building" is the ascendant of "Baidu
building tower 2". To enrich the POI semantics, we map
uninformative POI categories such as "Entrance" and "Door
Address" to the ascendant POI categories. The two-level
category has a primary category and a secondary category.
For example, "Education" is a primary category whereas
"University" is one of its secondary categories. There are 18
primary categories and 189 secondary categories in the POI
dataset.

• Road network data. Road network data help to capture re-
gional tra�c capability. Each record of road network consists
of a unique road segment ID, the start location coordinates,
the end location coordinates, the road length and the level
of the road segment. There are eight levels of road segments.
For instance, the national highway is with the highest level
and the pedestrian path is with the lowest level.

• Transportation station data. The distribution of trans-
portation stations also in�uences user preferences on trans-
portation modes. For regions with few bus stations, taxis
might be preferred. Each record of transportation station
data consists of a unique station ID, coordinates of the sta-
tion location, a list of bus lines across the station and the
corresponding city code.

Table 4 shows the distribution of primary POI categories. The spa-
tial distribution of POIs in B������ is show in Figure 9(a). Figure 9(b)
shows the spatial distribution of road networks and transportation
stations, where the yellow lines are road segments and black points
are stations. Similar to user activities (as shown in Figure 2(a) and
Figure 2(b)), the density of POIs, road segments and bus stations in
the urban central area is much higher. As described in Section 2.3,
Figure 9(c) shows the distribution of weather in each day. Overall,
there are more rainy days in September and November whereas
more sunny days in October.

Table 4: Statistics of Primary POI Categories of B������.

ID Category Count
P01 Residence 163,733
P02 Shopping 137,882
P03 Company 137,223
P04 Entrance 110,667
P05 Life Service 85,448
P06 Food 78,088
P07 Government 37,546
P08 Education 35,035
P09 Beauty 19,650
P10 Healthcare 16,123
P11 Finance 14,688
P12 Entertainment 13,894
P13 Hotel 12,700
P14 Culture Venue 9429
P15 Sports 9,022
P16 Tourist Attraction 7,763
P17 Door Address 7,709
P18 Administrative area 4,069

B DETAILED FEATURE LIST
Table 5 is the feature list used in Hydra, including Plan features,
Spatial features, Temporal features, Meteorological features, and User
features.

C SPHERICAL DISTANCE CALCULATION
Given (�1, �1) as the coordinates of origin o and (�2, �2) as the co-
ordinates of destination d . The spherical distance of od is calculated
as follows:

dod =2R · atan2(
q
sin2(��od /2) + cos�1 cos�2 sin2(��od /2),q

1 � sin2(��od /2) � cos�1 cos�2 sin2(��od /2))
(8)

Where ��od = �1 � �2 and ��od = �1 � �2. We set R = 6371 to
approximate the distance of od on the earth’s surface.

D DATA INTEGRATION
We integrate multi-source urban datasets into a uni�ed dataset to
create a more comprehensive view of transportation mode choices.
Speci�cally, by integrating the user behavior data and the meteoro-
logical data, we can �nd the key weather factor in�uencing users’
transport mode preference. As another example, by integrating the

Applied Data Science Track Paper KDD ’19, August 4–8, 2019, Anchorage, AK, USA

2323



(a) POI distribution. (b) Road network and station distribution. (c) Weather distribution.

Figure 9:More distributions of theB������ dataset: (a) the distribution of POIs; (b) the distribution of roadnetworks and stations;
(c) the distribution of weather

Table 5: The Description of features.

Feature Type Feature Description

Plan

Road network distance The length of the planned route on the road network
Price The total cost of the plan
ETA The estimated time of arrival (ETA) of the plan
Transfer count The number of transfers of the plan
Transport mode count The number of transport modes used in the plan

Spatial

District The administrative district which the origin and destination belongs to
POI category The primary and secondary category of the POI
Spherical distance The spherical distance between the OD pair
Station distance Spherical distances of top-k nearest bus stations from the O/D location
Station count The number of bus stations in the O/D region
Regional POI distribution The distribution of two level POI category of corresponding O/D region
Regional road network distribution The number of road segment and road intersection in the O/D region
Regional bus line count The number of bus line cross the O/D region
Regional historical mode distribution The mode preference distribution of O/D/OD region

Temporal

Hour The corresponding time period in a day
Minute The corresponding minute bin
Day of week The ordinal number of the day in a week
Day of month The ordinal number of the day in a month
Workday Whether the day is a workday

Meteorological

Weather The weather in current time period
Temperature The temperature and statistics (i.e., highest/lowest temperature) in current day
AQI The AQI and AQI statistics (i.e., highest/lowest AQI) in current day
Wind speed The wind speed in current time period
Wind direction The wind direction in current time period

User
Demographic attribute The age, gender of the user and OS in use
Social attribute The education level, industry type, car type and consumption level
User historical mode The mode preference distribution of the user

user behavior data and POI data, we can analyze the relationship
between transport modes and travel intention.

We use the �OIN operator to integrate all datasets together. We
�rst join user queries, display and click records on the session ID.
Since each query contains an origin and a destination, we further
join the origin and the destination with the POI data through loca-
tion coordinates and POI names. Note that in map search queries,
91% origins are "current locations", which do not have explicit POI

names. For such origins, we associate the coordinates with the
nearest POI. Besides, the meteorological data is in district level.
Therefore, we join the origin and the destination with the mete-
orological record if the coordinates located in the corresponding
district. We crawl the polygon of each district as a preprocessing
step and then join the original and destination with the meteorolog-
ical record if the coordinates located in the corresponding district.
Finally, we join the above data with user pro�le data through user
IDs.
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